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NONISOTHERMALFLOW OF A POLYATOMIC GAS IN A CHANNEL 

AND THE THERMOMOLECULAR PRESSURE DIFFERENCE EFFECT 

V. M. Zhdanov, V. A. Zaznoba, and I. V. Safonova UDC 533.6.011.8 

In [i] the nonisothermal flow of a rarefied polyatomic gas in a plane channel was con- 
sidered, using the method of [2-4]. One of the results of [i] was an expression for the 
thermomolecular pressure difference (TPD) arising at the ends of the channel for a fixed 
temperature difference. It is known [5-13] that measurement of the TPD for polyatomic gases 
can serve as an independent source of information on the characteristics of the inelastic 
collisions between molecules, since the effect depends upon the translational part of the 
thermal conductivity (xt), which in turn depends explicitly on the rotational and vibration- 
al collision numbers Z r and Z v. This was first discussed in [5, 14], where a theoretical 
expression for the TPD was obtained using the "dusty-gas" model. For small Knudsen numbers 
the dependence of the TPD effect on xt also follows from a rigorous kinetic analysis of vis- 
cous and thermal slipping in a polyatomic gas [15, 16]. The use of the dusty-gas model to 
interpret the experimental results involves, however, a whole set of parameters resulting 
from the model itself (empirical constants) and from the choice of an "average" temperature 
of the gas in the channel [6, 17]. This is evidently the reason for the rather large scat- 
ter in the results for Z r for several polyatomic gases, as obtained by different authors 
[18]. A second cause of discrepancies between the results is the use in certain papers of 
nonrigorous expressions for the translational Euchen factor, in which the combined effect 
of the rotational and vibrational degrees of freedom of the molecules is not taken into ac- 
count in a sufficiently correct way. 

Since measurements of the TPD effect are usually done using packets of circular cylin- 
drical capillaries, a more reliable method of interpreting the results should be based on 
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expressions obtained from a rigorous solution of the kinetic equation for nonisothermal gas 
flow in a capillary. This problem was solved in [ii, 19] on the basis of the linearized 
kinetic equation with an assumed collision integral (the third-order model) and the use of 
numerical or variational methods. In the present paper we consider the solution of this 
problem using the method of [2-4], which is extended to the case of flow of a polyatomic 
gas with two kinds of internal degrees of freedom. The resulting analytical expressions 
for the kinetic coefficients of the Onsager matrix, which describe mass and heat transport 
in the capillary, and the corresponding expressions for the TPD effect, are valid for inter- 
mediate Knudsen numbers close to the viscous flow regime with slip (Kn ~ 0.25). Comparison 
of the theoretical and experimental dependences of the effect in this region of Knudsen num- 
bers gives the quantity Z r for a series of molecular gases with known coefficients of accom- 
modation at the wall. In the case of Z r values determined by other methods, such as ultra- 
sonic data, a comparison of this kind can give information on the coefficients of accommoda- 
tion of the gas molecules at the wall of the channel. 

Calculation of the Kinetic Coefficients. We consider the slow flow of a polyatomic 
gas in a circular cylindrical capillary of radius R under a small pressure gradient (k = 
p0-1dp/dz) and temperature gradient (~ = T0-1dT/dz). We assume that both the rotational 
and vibrational degrees of freedom of the gas molecules are excited. 

The solution for the distribution function of the molecules is assumed to have the form 
[i] 

[ ( 5 
/ , j (~,  ~, :, ~,  ~ )  = l~jo 1 + k: + ~z ~ ,  - y  + 

+ e~ _~r  + ev__ ~v) + qhj (v, r, e'~, ev)], 

/ijo =- no (fi/~)8/2QrlQvl exp ( -  ~v ~ - a~-- ev), ~ = m/2kBT o. 

(i) 

Here the subscript 0 corresponds to the parameters of an absolute Maxwell-Boltzmann dis- 
tribution; eir = Eir/kBT0; ej v = EjV/kBT0; Eir , Ej v are the internal energies of molecules 
in the i-th i=otational and j-th vibrational states: 

~r Qr-XEe; exp( r ~v-i v v = ei), Qv Eej exp (- ej), 
i j 

er = exp ev = exp (:) 

The nonequilibrium correction to the distribution function ~i'(v, r, e .r, e .v) satis- J x j 
fies the linearized kinetic equation, which for the cylindrical geometry of the problem is 
written as 

o@~j ( 5 ~. v _ ~ v )  
v ~  + v~k + v ~  ~v 2 - - - Y  + ; - - ~  + e~ + 

(2) 

r Ov r r Ovep 1--., , / l i l j  l (1)i,j, --~ 
{1/'/1 21J'Jl 

+ , --cl)~ - -~1%j~ g(~(~ihl~/t ] h]l,  g, X, 
l i l J  1 

Below we use the system of moment equations following from (2), obtained in the same approxi- 
mation as in [I-4], but extended to the case of two kinds of internal molecular motions (ro- 
tational and vibrational modes). Multiplication of (2) by the appropriate polynomials and 
then integration with respect to velocity and summation over the i and j quantum states gives 

I 0 
-;- -~r r~rz + po k -- O; ( 3 ) 

O ( 2 t ) m  s Po 
ms=~ + -Tq~ + PoU~ + %-- ( =~-- s ~ )  = -- ,-7 "~"~; (4)  

t c9 
ar r (M:,.~ + M=r + M:,.=) + @o (k + ~) = 

r mPo 
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(7)  

tSpo (8) 
Ir orO r (4Mzv~ - -  M ~  - -  Mzr=) - -  ~ ~Izr~v = - -  2q Szrr; 

1 0 t 0  t5p o 
r Or r ( 4 ; ~ - - M ~ - - M ~ z )  + - ; - - M ~  = g-~ s~+~; (9)  

~ r , + ~ + ~ = z =  O. ( 1 0 )  

The moments of the distribution function in these equations are defined as in [i], extended 
to the case of two modes. The right-hand sides of Eqs. (3)-(7) coincide with the expressions 
obtained in the 21-moment approximation of [20]. It is convenient to write them in a form 
where the coefficients of the appropriate moments depend explicitly on the coefficient of 
viscosity q and the dimensionless parameters P0Dr/q, p0Dv/q, p0Drv/~, where Dr, Dv, and Drv 
are the coefficients of diffusion of internal energy. Expressions for these quantities are 
given in [21]. The coefficients A and B are given by 

t c r A ~ , =  t c ~' 
A r = ~ + 2kBZrv, �9 ~ + ~.kBZrv, 

~ = 1 + ~  B=I+~-Zv , B r , = t + ~ - ~  v - - .  

Here Z i = 4~i/~T n (i = r, v, rv); ~n = ~/P0; ~r and ~v correspond to the characteristic ro- 
tational and vibrational relaxation times, while ~rv is the characteristic relaxation time 
for collisions accompanied by both rotational and vibrational transitions (see [20]). 

A solution of (3)-(10) valid far from the wall of the capillary is found by assuming 
that the distribution function has the usual Grad form (but with the generalization of the 
internal degrees of freedom of the molecules taken into account [15, 20]). Hence 

ac ae t u~ (r)----u~ ( R ) - - ~ - ( B  2 - r  2) , 

ac r dp t a e  ~t  dT ~ t dp 
~X~z (r) --  2 az '  q~ = - -  ~ + -~z ' 
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%v 2 ~l cv 0o b4; A ---- I + ~ -  b~ b., A r b~ - -  
- -  nh Po kB 3n'~ kB \ - - -~ /  
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We n e x t  c a l c u l a t e  e x p r e s s i o n s  f o r  t h e  h e a t  f l u x  and hyd rodynamic  v e l o c i t y  a v e r a g e d  o v e r  
t h e  c r o s s  s e c t i o n  o f  t h e  c h a n n e l .  I t  f o l l o w s  f rom t h e  s o l u t i o n  o f  (3 )  t h a t  t h e  r e l a t i o n  
~ ( r )  = -  r dp 2 dz i s  v a l i d  o v e r  t h e  e n t i r e  f low r e g i o n .  S u b s t i t u t i o n  o f  t h i s  e x p r e s s i o n  i n t o  
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Averaging (5)-(9) over the cross section of the capillary, we have 

4P~ (t i0 ) t 20p0 r 20p 0 - v 
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where 
2 , L2 = --ff [Mzr~ (R) + Mz~r162 (R) + Mz~z~ (R)I + 5p~ (k + x); 

mP 0 

2 r cr 2 M v cV 
L 3 = ~ - M ~ ( R ) + p 0 ~ ;  L4=--~- r ~ ( R ) + P 0 ~ ;  

2 
L5 ---- -R- [ 3 M ~  (R) + 3M~r (R) - -  2 M ~  (R)]. 

The solution (ii) and (12) reduces to the results 

mP o m kB m kB ~_~L5 ' (13)  <u~> i----L + - -  %tL~ + ~L3 + - -  - -  zVL~ + 

r v m2Zt m~, ~ rn~v L 
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The unknown q u a n t i t i e s  L i on t h e  w a l l  o f  t h e  c h a n n e l  a r e  found  w i t h  t h e  h e l p  o f  t h e  a p p r o x i -  
mate  method o f  L o y a l k a  [ 1 - 4 ] .  

�9 We i n t r o d u c e  t h e  d i m e n s i o n l e s s  q u a n t i t i e s  Jm* = Jm/mJ0 = 2~z/2<Uz >, Jq* = Jq/kBToJ0 = 
2~Z/2p0-1<q : , ) ,  where  Jm and J~ a r e  t h e  a v e r a g e d  mass and h e a t  f l u x e s  p e r  u n i t  c r o s s - s e c t i o n -  

. ~I i/2 �9 al area of the cap111ary, and J0 = n0/2~ �9 Then, accordlng to the principles of irrevers- 
ible thermodynamics [22], Jm * = -LmmkR - LmqTR , J * = -L@mkR - Laa~R. General expressions 
for the coefficients Liv follow from (13) using t~e expllcit expressions for L n (n = 1-5) 
and have the form 

L~--~ +(2--• + 4 x ~ 7.t 6 
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= -  lOkBn  + g n kB 70 + + 

: 7 7 

Here  ~ = B1 /2p0R/q  i s  t h e  r e c i p r o c a l  o f  t h e  K n u d s e n  n u m b e r ;  t = t t + A r + A v .  We n o t e  t h a t  
the cross coefficients Liv satisfy the Onsager reciprocity relations (Lmq = Lqm). 

The TPD Effect. The relative magnitude of the thermomolecular pressure difference Ap 
arising at the ends of the capillary at a fixed value of the temperature difference AT is 
given by y = (Ap/p0)/(AT/T0) = -(Lmq/Lmm). 

In order to compare directly the theoretical and experimental results, it is desirable 
to simplify the above expressions for Lmm and Lmg by taking into account the difference in 
the orders of magnitude of the characteristic relaxation times for the rotational and vibra- 
tional degrees of freedom. 

First of all we note that the contribution of the vibrational degrees of freedom in 
for most diatomic molecules (N=, 02, CO, and so on) at room temperature can be neglected 

because the vibrational heat capacity is small (cV/kB ~ i). In addition, the condition 
i ~ Z r ~ Z v is satisfied for most diatomic and polyatomic gases over a wide temperature 
region. Together with Zv -l, the quantities Zrv -I, Dr/Dry , and Dv/Drv are also small, since 
they are determined by the rare collisions that involve simultaneous rotational and vibra- 
tional transitions [20]. In this case, even if cV/kB ~ i, one can omit in the expressions 
for Lmm and Lmq terms containing X v and terms proportional to these small parameters, and 
for the same reason one can simplify the expressions for i t, i r, X t, X r which then coincide 
with the expressions (14) and (15) of [i], where only a single type of internal degree of 
freedom was considered. 

Therefore, over a wide temperature region the dependence of the TPD effect on the in- 
ternal state of the molecules is characterized by its dependence on the parameters cV/kB, 
Z r, P0Dr/~, which are determined solely by the rotational degrees of freedom of the molecules. 

The theoretical and experimental values of y as a function of the reciprocal of the 
Knudsen number are compared in Figs. 1-5 for 6 ~ 3 (Kn ~ 0.33). Experimental results* were 
used on the TPD effect for the flow of a gas in circular cylindrical capillaries for small 
temperature differences inside the sample (AT ffi 20 K at T I = 273.2 K) [23]. 

It is evident from Fig. i that the experimental data for monatomic gases is closely 
reproduced by the theoretical dependence for Kn ~ 0.2 with x = i (curve i) for Xe and ~ = 
0.9 (curve 2) for He. The same values of the coefficient of accommodation of tangential 
momentum follow from measurements of Poiseuille flow in the viscous flow regime with slip 

3 4 5 g 78510 20 504050RO70g 
J 4 Y 878Y10 20 JO4050GOIO~" 

Fig. 1 Fig. 2 

~The authors thank A. N. Kulev for giving us data from the measurement of the TPD effect 

for a series of gases. 
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Fig. 5 

(~ = 0.895 • 0.004 for He and ~ = 1.010 • 0.040 for Xe [24]). The deviation between the 
theoretical curves and the experimental values for Kn e 0.2 is obviously connected with the 
region of applicability of the solution obtained here. 

The experimental values of y as a function of 6 are shown in Fig. 2 for molecular nitro- 
gen. Also, theoretical curves calculated from the formulas given here are plotted for Z r = 
3 and 6 (curves i and 2) and D r = D11 [D11 is the coefficient of self-diffusion (P0Dll/q = 
1.32)]. The value ~ = 0.92 for N 2 was taken from [24]. We note the satisfactory agreement 
of the results in the region Z r = 3-6. These values correspond closely to the data from 
ultrasonic measurements (Z r = 4.3 [25, 26], 5.8 [27]). Taking into account the experimental 
error (-1.5% [23]), the observed resolution of the theoretical curves for Z r ~ 3 does not 
allow one to determine Z r with high accuracy. 

Figure 3 illustrates the possibility of using the TPD effect to determine ~ for a known 
value of Z r (Z r = 4.3) for the case of nitrogen. It is evident that the resolution of the 
curves in the dependence on ~ is more noticeable in this case (curves 1-3 correspond to ~ = 
I ,  0.9, 0.8). 

Figure 4 shows the results of a comparison for carbon dioxide. According to the ultra- 
sonic data [28], the value of Z r for CO 2 lies between about 1.3 and 2. The theoretical 
curves shown in Fig. 4 were constructed for Z r = 1.5 and 2 (curves i and 2, respectively). 
As follows from [29], when Z r ~ 2.5 it is necessary to take into account that D r ~ D11 and, 
therefore, in the calculation of y the ratio Dr/D11 was calculated with the help of the ap- 
proximate equation [29]: Dr/Dll = i + 0.27Zr -I - 0.44Zr -2 - 0.90Zr -3. 

Satisfactory agreement between the theoretical and experimental values takes place for 
= 1.0 in the case Z v = 1.5 [24]. 

The results for methane are shown in Fig. 5. The ultrasonic measurements give Z r = i0.0 
[27]. The theoretical curves were constructed for M = 0.9 (curve I) and i (curve 2) for 
Z r = I0. The comparison shows that there is satisfactory agreement between the experimental 
data and the theoretical curve for ~ = 0.9. 
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